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AMrae&--An analytical solution was obtained for the turbulent entrance-region problem with a step- 
function heat flux distribution. N~~~e~enval~~ e~e~unction~ and series coefficients were evaluated 
from the characteristic equation by the method of RungeXutta. Calculated Nusselt numbers in the 
entrance region were found to be in general agreement with recent experimental measurements. The 
solution was then generalized to include cases of arbitrarily varying heat flus by means of Dubamel’s 
integral, and sample results wem obtained for cases of linear and simrsoidal heat flux distributions, 
Emphasis was placed on low-Prandtl-number fluids, though the solution is general and some sample 

calculations were made for fluids of moderate F’randtl numbers. 

a, 
A, 

G 

k 
k 
L”: 
Pe, 
Pr, 
41, 

42, 

Q, 

Nu, 
Nu’, 
r, 

NO~NC~~R~ 

r2 - rl; 
constant in sinusoidal heat flux func- 
tion ; 
constant in linear heat flux function ; 
series coefficient in equation (12); 
heat capacity ; 
heat flux function, as defmed by equa- 
tion (3); 
function in temperature solution, as 
defined in equation (8); 
molecular thermal ~nductivity ; 
total effective thermal conductivity ; 
period of sinusoidal heat flux form; 
Peclet number = 2upV CJk ; 
Prandtl number = C&k ; 
heat flux at r = rI ; 
heatfluxatr = r,; 
constant heat flux at r = rI for step 
function case ; 
local Nusselt numbers for $ = 1; 
local Nusseit numbers for varying I,&; 
radial coordinate ; 

* This work was performed under the auspices of the 
U.S. Atomic Energy Commission. 

radius of inner (core) tube ; 
radius of outer (shell) tube ; 

r2lri ; 

ajrl = r* - 1; 
Reynolds number = 2ap V/p ; 
temperature ; 
bulk temperatue ; 
inlet temperature ; 
wall temperature ; 
wall temperature, as defined by equa- 
tion (20); 
d~ensionle~ local velocity = z+)/V 
axial velocity ; 
bulk average velocity ; 
z/2a ; 
defined by equation (20); 

(r - rr)/a; 
eigenf~ction in equation (12) ; 
axial coordinate. 

Greek letters 

/XC eigenvalues in equation (12) ; 

% turbulent eddy d~~ivity of heat; 
CI turbulent eddy diffusivity of momen- 

tum ; 
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e, 

e 

ez 

PL, 

P, 
c, 

HEAT 

dimensionless temperature 

= IT - Gl/[Q4kl; 
developed temperature solution ; 
entrance-region temperature solution ; 

viscosity; 
density ; 
dimensionless total diffusivity 

Pk+E. 
=lLpcp hT c > 

Ku - Tbmv - Tbh; 
ratio of heat to momentum diffusivities. 

INTRODUCTION 

TRANSFER to fluids flowing through 
annular passages is of practical importance 
and has been the subject of many studies in 
recent years [l-lo]. In terms of theoretical 
analysis, the case of laminar flow is now well 
in hand with solutions available for the entrance 
region, the asymptotic (thermally developed) 
region, and for both constant and axially 
varying boundary conditions [7]. Analysis of 
heat transfer with turbulent flow in annuli is 
not nearly as complete. Only the thermally- 
developed, asymptotic case has been analyzed 
thoroughly for a wide range of radius ratios and 
Prandtl and Reynolds numbers [3, 5, 8-101. 
For the entrance region problem, the mod 
pertinent theoretical studies to date are those 
of Kays and Leung [9], Lee [lo] and Quarmby 
and Anand [ll]. Kays and Leung [9] utilized 
experimental measurements to deduce tempera- 
ture solutions for four radius ratios and a 
number of Reynolds numbers. However, since 
their results were based on experimental measure- 
ments made with air, the complete solutions 
are available only for Pr = 0.7. Lee [lo] 
studied the classical entrance-region problem 
(with a step increase in heat flux), for the case 
of heat transfer from the core tube. Using a 
boundary-layer model and an assumed radial 
distribution of heat flux, he obtained only 
numerical solutions for the entrance-region 
Nusselt numbers at several radius ratios, Prandtl 

complex problem of axially varying heat flux, 
only the experimentally derived solution of 
Kays and Leung is available. As indicated in 
their paper [9], Kays and Leung’s temperature 
functions may be utilized to obtain local 
Nusselt numbers for axially varying heat fluxes 
by the superposition technique, provided 
Pr = 0.7 and Re and r, are restricted to the 
values of their tests. Lee’s [lo] numerical 
solutions are limited entirely to the step- 
function boundary condition, and do not deal 
with the more general boundary condition of 
variable heat fluxes. Quarmby and Anand [ 1 l] 
has just recently presented a solution for the 
case of constant wall temperatures. 

Thus, there appears to be a need for rigorous, 
general solutions for the problem of turbulent 
heat transfer in the entry-region of annuli, 
especially for the case of axially varying heat 
fluxes. Such analyses are needed most for fluids 
with low Prandtl numbers, (e.g. the liquid 
metals), for which the effects of variations in 
boundary conditions may be especially 
important. 

This paper presents an exact, analytical 
treatment of the subject problem. Specifically, 
we considered the case of turbulent flow through 
concentric annuli with : 

(a) fully developed turbulent flow 
(b) uniform inlet temperature 
(c) heat transfer from the inner (core) wall 
(d) steady state 
(e) heat flux arbitarily varying in the axial 

direction. 
The approach was to first obtain a rigorous 
solution for the step-function, constant-heat- 
flux problem by means of the classical, 
orthogonal-expansion method previously 
utilized for heat transfer in tubes and between 
parallel plates [12,13]. This type of solution 
was preferred since theeigenvalues and functions, 
once evaluated, could then be used to obtain 
solutions for the more general problem of 
axially varying heat flux. Emphasis was placed 
on low-Prandtl-number fluids, though the solu- 

numbers and Reynolds numbers. For the more tion is generally applicable to, and some limited 
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(a) Step-function case results were obtained at, higher Prandtl numbers. 

ANAL.YSIS 

Figure 1 defines the geometry and coordinate 
system for the analysis For a constant-property 
fluid in steady-state flow through an annulus, 
the energy transport equation may be written as 

Consider first the simplest case where heat 
flux varies as a step function, 

q1 = F(z) = Oforz < 0 \ 

= Q, (a constant), for z > 0. j (6) 

The dimensionless temperature solution is 
sought in two parts-a fully developed solution, 

(1) 0,,, which is applicable in the region of large x, 
and an entrance solution, 8, such that the 
complete solution is given by : if axial symmetry exists. T and u are taken to be 

time-averaged temperature and axial velocity, 
respectively. The mean radial velocity is zero 
at all points for fully developed turbulent flow. 
and an entrance solution, i3,, such that the 

ek Y) = ux, Y) + e,k Y). (7) 

Due to its linearity, equation (1) is applicable to 
both 0, and 8, individually. It is evident that 8, 
does not have to satisfy the initial condition at 
x = 0, and that 8, approaches zero as x + 00. 

By an analysis similar to that described in 
[12], the solution for tI,, is obtained as, 

FIG. 1. Coordinate system. 

In equation (l), k, represents the total effective 
thermal conductivity, which includes both the 
molecular-conduction contribution and the tur- 
bulent, eddy-diffusion contribution : 

k, = k + pCfib (2) 

The appropriate boundary conditions for the 
stated problem are : 

q1 = heat flux at inner wall 

= -kz 
ar 1=1, 

= F(z) (3) 

q2 = heat flux at outer wall = 0 (4) 

T(z = 0, r) = T,. 

edx, y) = f C,x(y)exp - tR$ x (12) 
n=l [ 1 

where the eigen constant, Bi, and eigen fimc- 
tions, Y.(y), are determined from the character- 
. . 

(5) istic equation, 

669 

8x 
exx,~) = Pd2 + R) +GtY) (8) 

where G(y) represents the radial 8 profile in the 
fully developed region. It can be shown that 
G(y) is uniquely determined by the equations : 

Re*u(y)- 
2 1 

=p 
Pe(2 + R) 1 + Ry 

+Ry)$ . 1 (9) 

8G - 
ay ),=o = I -1 w-8 

ju(y)G(y)*(l + Ry)dy = 0. (11) 

The solution for 0, is obtained by separation 
of variables : 
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& a(y).(l + Ry).Z 
[ 1 

+ [U(Y). (1 + RY) . Bnzl xl = 0 
and boundary conditions, 

(13) 

av, au, -I I ay y=. =aY y=l 
= 0. (14) 

Due to the orthogonality property of the 
governing equations, the series coefficients, C,, 
can be obtained from the relation 

c, = 
- $uO3~)-(1 + Ry)* Kdy 

i U(Y) . (1 + RY) . Y.’ dy ’ 
(15) 

The complete temperature solution is thus, 

8 

&x3 ‘) = (2 + R) Pe 
x + G(Y) 

+ 2 C,Y,(y)exp [- gx] (16) 

n=1 

It is of particular interest to know the local 
wall temperature, which is determined from 
equation (16) to be, 

T,(u, y = 0) = To + Qa 
k (2 +8& Pe + G(o) 

+ 2 C,Y,(O)exp [- 2x1 (17) 

n=l 

The local Nusselt number is then obtained as 

2aQ 
Nu(x) = k(T, - T,) 

and the fully developed Nusselt number is 
found to be, 

2 
Nu(x = cc) = G(o) (19) 

(b) Variable heatflux case 
Here, we allow the wall heat flux to be an 

arbitrary function of axial position : 

41 = F(x) for x 3 0. 

Due to the linearity of the governing energy 
equation (l), it is possible to use Duhamel’s 
integral to extend the step-function solution to 
the case of variable heat flux. From equation (17) 
we have that the effect of a unit increase in heat 
flux (Q = l), at position x’, on the downstream 
wall temperature is 

Tw,,(x, x’) - To = + - ; (,“(I ;;;e + G(O) 

+ z C,Y”(O)exp [- g(x - x’)] (20) 

Applying Duhamel’s theorem, the wall tem- 
perature at x, resulting from a variable heat 
flux, ql = F(x’), in the region 0 < x’ < x is, 

x 

T,(x) - To = T,, Jx, x’) - T, dx’ 
. 

I 
0 

whence, 

1 * -- 
Re c 

C,,~~~(O)exp [- g(x - x’d}dx’. 

n=l 

(21) 
The local bulk temperature is obtained by heat 
balance, 

8a x 
T,(x) = T, + k(2 + R) Pe 

s 
W) dx’. (22) 

0 

The local Nusselt number may then be deter- 
mined to be : 
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Re - Flxl 
x c4 

-2 
I c 

F(9) * C& K(O) ev -+$d) dx’ 1 
0 n=l 

(23) 

COMPUTATION 
The temperature solution and the expression 

for local Nusselt numbers derived above consti- 
tute a rigorous solution to the subject problem. 
To utilize this solution a number of evaluation 
and computation steps are required, namely: 

(a) specify the velocity dist~butio~ u(y); 
(b) specify the dif%sivity distribution, a(y); 
(c) determine the G(y) function ; 
(d) determine the eigenvalues, /I,‘, the eigen 

function, ?&J), and the series coefficients, 

(e) :kulate Nu(x) as desired for any F(x) 
of interest. 

A number of authors have presented either 
experimental data or correlations for the fully 
developed, turbulent velocity profile in eon- 
centric annuli 18, 9, 14-213. Some disagree- 
ments still exist regarding the “correct” velocity 
profile and the radius of maximum velocity. 
For the present study, the empirical correlation 
suggested by Kays and Leung [9] was used to 
specify u(y). This correlation was found to be in 
reasonable agreement with the experimental 
measurements of both Knudsen and Katz [16] 
and Brighton and Jones [14]. Levy’s correlation 
[lS] gives approximately the same velocity 
dist~butio~ The procedures suggested by 
Rothfus et af. [IS] or by Clump and Kwasnoski 
[19] may give slightly more accurate estimates 
of the velocity distribution However, both 
these procedures required trial-and-error calcu- 
lations and it was felt that for the purpose 
of this study, the small difference in the results 
did not warrant this additional complexity. 

The total diffusivity, a(y) = p 
k 

( > 
- + Ed 

p PC, 
, is 

position dependent only because of variations 
in the turbulent diffusivity, E& Fortunately, for 
liquid metals or other fluids of low Prandtl 

numbers, the turbulent diffusivity is small 
relative to molecular diffusivity in most cases; 
i.e. 

k 
- > ‘%, 
PC, 

so that some latitude in the specification of E* 
is acceptable. Following common practice, one 
can write the thermal diffusivity in terms of the 
momentum diffusivity : 

&k = $Em (24) 

Rigorously speaking, $ is dependent on Re, 
Pr, I.+ and y [22]. However, this dependence is 
small for fluids of moderate Prandtl numbers, 
for which $ z 1. For low Pr fluids where 9 
may be silently different from unity, the 
net effect is often still of only second order due 
to the relative importance of molecular con- 
duction. In this study, sample results were 
obtained both for $ = I and for $ varying with 
radial position. For the radial distribution of 
E, the expressions developed by Deissler [23] 
and Reichardt [24], as modified by Kays and 
Leung [9] for flow in concentric annuli, were 
used in the computations. The modified ex- 
pressions successfully correlated the experi- 
mental data of Knudsen and Katz [16], Again, 
the slight increase in accuracy that may have 
been attained by following the trial and error 
procedure of Rothfus et al. [l5] was felt to be 
unnecessary for this problem 

Once u(y) and c(y) have been specified, it 
becomes possible to determine the G(y) function 
by numerical solution of equations (9)-(11). 
The eigenvalues, fif, and eigenfunctions, Y,(y), 
were determined from equations (13) and (14) 
by the Rung+Kutta method. Even with the 
aid of a high-speed digital computer, this step 
required a su~t~ti~ effort To obtain sufficient 
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accuracy in the local Nusselt numbers for small 
values of x or for cases with rapidly varying wall 
heat flux, it was felt that one would require a 
minimum of five eigenvalues in the series ex- 
pansion. Twenty terms, with 10 significant 
figures for both /?.’ and K(J), were actually 
obtained and used in this study for all sample 
cases. The series coeffkients, C,, were then 
evaluated by equation (15). 

With /3,“, &{y) and C,, in hand, the local 
temperature, 0(x, y), and local Nusselt numbers, 
Nu(x), for the turbulent entrance region with a 
step-function heat flux could be calculated 
from equations (16) and (is), respectively. 
Si~larly, local Nusselt numbers could be 
calculated for the variable flux case by equation 

(23). 

RESULTS AND DISCUSSION 

The eigenvalues and functions were deter- 
mined for fourteen sample cases, with the 
following ranges of variables : 

Re: 104, 5 x 104, 105, 1.7 x lo’, 2 x lo5 
Pr : 0905,0~01,0~023,0~03,0~6,0~1,0~7, 1, 5 
I* : 1.5, 25,2.78,4.0. 

Since the primary interest of this study is in 
heat transfer with liquid metals, the majority 
of the sample calculations dealt with Pr = O-005, 
which is the Prandtl number for sodium at 
800°F. Table 1 presents values of 8,’ and 
C,. Y,(O), based on I/J = 1, inasmuch as these 
are the functions required to calculate Nusselt 
numbers. Due to space limitations, values are 
given only up to n of 6, while actually 20 eigen 
terms were evaluated and used in all calculations. 

Figures 2-8 present results for the step- 
function (constant) heat flux case. Figure 2 
illustrates the variations in local Nu for different 
Reynolds numbers, at Pr = OQO5 and r. = 1.5. 
As anticipated, Nu(x) decreases from infinity 
at x: = 0 to asymptotically approach the fully 
developed value as x + co. These results clearly 
indicate that the approach to the fully developed 
Nu is slower (longer thermal entry length) for 
higher Re. Also shown on this graph are the 

Pr=O-005 
rr = I.5 
iq -constoni 
$=I 

I I I I I I I I 
0 2 4 6 8 IO 12 14 16 'k 

FIG. 2. Effect of Reynolds numtw tn local Nusselt numbers. 

IOCO 
800 

600 

(Ordinary fluids) 

140 

l . . 108 
100 - - 

80 - 

4 
= constant 

l $.>;,a of Quarmby [25] 

2 Re =4.5xi04 
r* = 2,8 

FIG. 3. Effect of Prandtl number on local Nusselt numbers. 
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Table 1. Eigenvalues and series coefidents 

OQOS 

OQO5 

0.005 

OQO5 

OQO5 

0,005 

0.01 

0.023 

oa3 

006 

0.1 

0.7 

1.0 

5.0 

5 x lo4 15 

5 x 104 2.5 

5 x lo4 4.0 

1 x lo4 1.5 

1 x lo5 1.5 

2 x 105 1.5 

5 x lo4 1.5 

1.7 x lo5 2.78 

5 x lo4 1.5 

5 x lo4 1.5 

5 x 104 1.5 

5 x lo4 1.5 

5 x 10’ l-5 

5 x lo4 1.5 

1 
2 
3 

: 
3 

1 
2 
3 

: 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 

9 

1 
2 
3 

1 
2 
3 

1 
2 
3 
1 
2 
3 

1 
2 
3 

2701 
10330 
22630 

2815 
10470 
22810 

2971 
10670 
23060 

2329 
8819 

19460 

3152 
12120 
26 340 

4017 
15530 
33 370 

1630 
6259 

13580 

2275 
8346 

17400 

897.5 
3464 
7351 

7155 
2766 
5781 

639.5 
2471 
5115 

532.1 
2034 
4097 
526.8 

2013 
4045 

518.0 
1977 
3961 

-0.1492 
-004439 
- 0.02059 

-0.1294 
-0.04125 
-0a1966 

-0.1042 
- 0.03684 
-0.01837 

-0.1716 
-0‘05113 
- 0.02324 

-0.1288 
- 0.03838 
- 001857 

-0.1021 
-0-03089 
- 0.01570 

-0.1253 
- Oil3782 
-0.01862 

-0a3653 
-@01260 
-0007463 

-0a7705 
- OG2345 
-0.01189 

-004911 
-0.01515 
- 0007955 

- 0.03303 
-0~01040 
-0m5455 

-0clO6OO4 
- OGO2150 
-0.0009184 
-OK)4213 
-0.001529 
-0006604 

- 0~8753 
- 0.0003362 
- OGOO1635 

4 

ii 

4 
5 
6 

4 
5 
6 

4 

ii 

4 
5 
6 

4 
5 
6 

4 

ii 

4 
5 
6 

4 

6” 

4 
5 
6 

4 
5 
6 

4 
5 
6 
4 

ii 

4 

39790 
61730 
88 540 

39970 
61970 
88780 

40220 
62260 
89100 

34300 
53290 
76470 

46 190 
71510 

102500 

58290 
89950 

128700 

23800 
36820 
52740 

29730 
45 480 
64500 

12770 
19620 
28030 

9972 
15240 
21700 

8775 
13350 
18970 

6916 
10420 
14770 
6820 

10270 
14540 

6661 
10010 
14160 

- 001334 
-0007600 
- 0006676 

-001272 
- 0007333 
- 0.006338 

-001204 
-0GO7125 
- om6070 

- 001474 
- 0.008722 
-om7413 

-0a194 
-0GQ7100 
-0m6005 

- OQ1026 
- 0@06273 
-0035328 

-0411214 
-0m7417 
-0006334 

-0W5023 
-0.003138 
-0.002558 

- OcKf7432 
-0m4111 
- 0003272 

- oaO4759 
- OGO2501 
-0001786 

-0.003228 
-0001490 
-0.001043 

-0GOO8041 
OGOOO1265 

- 00003053 
- oaOO594o 

O.OOOOO185 
-0.0002440 

-0@001625 
-0ao3373 
-0aoO1047 
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developed Nusselt numbers, Nu(co) calculated 
by equation (19). 

The strong effect of Prandtl number on local 
Nu is shown in Fig. 3. These Nu were calculated 
for Re = 5 x lo4 and rr = 1.5. To interpret 
these results in terms of real fluids, note that the 
five sample Prandtl numbers are equal to those 
of the following fluids at the listed temperatures : 

Pr Fluid Temperature F 

0005 sodium 800 
0.010 sodium 250 
0.7 air (1 atm) 212 
1.0 water 340 
5.0 water 94 

Some experimental data obtained with air [25] 
are also shown in Fig. 3. These are seen to be 
approximately 5-10 per cent lower than the 
curve calculated for Pr = 0.7. This difference 
seems reasonable in view of the slightly different 
Re and r* values for the experimental (vs. 
calculation) conditions. 

The effects of entrance-region and variable 
heat flux has often been taken to be more 
important for low-Prandtl-number fluids than 
for fluids with moderate or high Prandtl numbers 
[26]. Thus, for a given set of conditions, at a 
given axial position(x), one normally expects the 
ratio Nu(x)/Nu(co) to increase with decreasing 
Pr. The present analysis indicates that this 
behavior is actually true only for certain ranges 
of the governing parameters. Figure 4 shows 
plots of Nu(x)/Nu(co) vs. Pr at various values 
of X, for constant Re and r.. It is seen that in the 
range ofPr > 0.1, the entrance effect, as measured 
by increasing Nu(x)/Nu(co), does indeed in- 
crease with decreasing Pr. However, further 
decreases of Pr below 0.1 shows Nu(x)/Nu(co) 
passing through a maximum and then decreasing. 
Physically, this behavior can be attributed to 
two opposing factors. First decreasing Pr 
(increasing thermal conductivity) tends to in- 
crease the zone of influence of the wall so that 
the over-all temperature profile is more greatly 
affected by changes at the boundary. On the 

other hand, higher thermal conductivities tend 
to increase the speed of establishing thermal 
boundary layers, which would aid in the approach 
to fully developed conditions. Which of the 
two factors predominate would, of course, be 
dependent on the specifics of a given situation 
and would be influenced by the other indepen- 
dent variables : Re, x and r,. For the conditions 
represented in Fig. 4, the entrance-region effect 
was determined to be most important for fluids 
with (2 x lo-‘) < Pr < (5 x 10-l). It is in- 
teresting to note that Sleicher and Tribus [27] 
found a similar maxima effect in the variation 
of entry length with Pr for the case of turbulent 
flow in tubes with constant temperature bound- 
ary condition. 

The open circles on Fig 4 represent Lee’s 
results [lo] from his boundary-layer solution 
for the same conditions, at x = 6. These are 
seen to be substantially lower than the com- 
parable curve obtained in the present study. 
It is significant to note that the formal solution 
of Sparrow et al. [12] for the problem of tur- 
bulent flow in tubes also showed greater entrance 
effect than the boundary layer type of solution 
(per Deissler [28]). Sparrow et al. [12] noted 
that the boundary layer approach, which requires 
that either the temperature or the heat flux 
radial profile be assumed, may be more subject 
to error than the formal orthogonal-series type 
of solution. In the case of Lee’s boundary-layer 
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solution for annuli, the assumed radial heat- 
flux distribution was based on an expression 
originally obtained for the fully-developed 
region, with slug flow. There is some uncertainty 
regarding the accuracy and effect of such an 
assumption for analysis of the entrance region. 

The radius ratio, T,, has a relatively minor 
effect on local Nusselt numbers. This is demon- 
strated in Fig. 5, where Nu(x) is plotted vs. x 

Pr q 0,005 

Re=5x104 

q,=constont 
Jr=l 

ffub) 
925 
- 

6.02 

7T 
- 

I 
6O 

I I I I I 
2 4 6 6 IO I%7 

x 

FIG. 5. Effect of radius ratio on local Nusselt numbers. 

at three values of I., for Pr = OGO5 and Re = 
5 x 104. It is seen that at these conditions, for 
x > 1, Nu(x) changes no more than 22 per cent 
as the radius ratio is reduced by a factor of 2.7 
(from 4-O to 1.5). It should be noted that as I+ 
approaches unity, Nu(x) should approaclf the 
values for the case of flow between parallel 
plates. At the other limit, as I. approaches 
infinity, one would expect Nu(x) to approach 
the values for external flow over a cylinder. 

The analysis was compared with some recent 
experimental data of Nimmo et al. [29], and the 
results are shown in Fig. 6. The experimental 

100 

90 

60 

70 

60 

50 

40 

T 

s 
30 

20 

IO 

. l . 

q = constant 
Pr=O-023 
Fe= I7x105 
1,=278 

- 
. 

Calculated curve, J,= I 
ExperImental Hg data of 

Nlmmo, Hlavac and Dwyer 

\. [h’u ko)=23~6] 

. 
. 

I I I I I I I 
0 IO 20 30 40 50 60 70 

x 

FIG. 6. Comparison of calculated and experimental Nusselt 
numbers. 

measurements were made at a constant heat 
flux, using mercury as the test fluid. It should be 
noted that the test geometry was such that fluid- 
dynamic and thermal boundary layers developed 
simultaneously, so that the experimental Nu 
would be expected to be slightly greater than 
the calculated Nu at small values of x. In view 
of this limitation and the difficulties associated 
with making accurate heat transfer measure- 
ments in liquid metal systems, the agreement 
between calculated and measured Nu shown in 
Fig. 6 appears reasonable. 

Figure 7 shows the effect of assuming non- 
unity diffusivity ratios, @, on the computed 
results. Of the various expressions that have been 
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proposed for estimating $ as a function of 
radial position, those of Buyco [30] and 
Dwyer [31] are among the most recent and 
most applicable to liquid metals. Figure 7 shows 

Nu(x) - Nu’(x) c Nub9 1 
for two sample cases, com- 

puted by : 

(a) II/ = 1 
(b) Buyco’s expression 

(c) Dwyer’s expression 

$=l- 
0*2/Pr - 2.0 

(E Jv)O’Q (27) 

where, Nu(x) is calculated based on I(/ given by 
equation (25) and Nu’(x) is calculated based on $ 
given by either equation (26) or equation (27). 

FIG. 7. ETfect of diffusivity ratios on local Nusselt numbers. 

x 

As one would expect, the local Nu based on 
variable $ are lower than the corresponding Nu 
for @ = 1. For the cases considered, both 
Dwyer’s and Buyco’s expressions lead to Nusselt 
numbers which are approximately O-18 per 
cent less than those for $ = 1. The effect of 
non-unity diffusivity ratio is seen to be less 
important in the entry region than in the fully 
developed region. 

The fully developed Nusselt numbers, Nu(#), 
shown in the various figures were calculated by 
equation (19). A number of correlations for 
developed Nusselt numbers have been pre- 
viously published and can be compared with 
equation (19). In 1962, Baker and Sesonske [32] 
published data and an empirical correlation 
based on measurements made with Na as NaK 
in a double-pipe heat exchanger. Seban [33] 
developed an expression for heat transfer to 
liquid metals flowing between parallel plates 
which can be used to estimate Nusselt numbers 
for annuli with small radius ratios. Most 
recently, Dwyer [31] presented a semi-empirical 
correlation which includes the effect of variable 
average II/. These three correlations are com- 
pared with the present analysis in Fig. 8, 

t 
r. =I 5 

0, *constant 

FIG. 8. Fully developed Nusselt numbers. 

where the fully developed Nu is plotted against 
P&cl& number for r* = 1.5 and Pr = O-005. 
Also shown in the figure is the Nusselt number 
for the limiting case of molecular conduction 
transfer, which is applicable at low PM& 
numbers. It is seen that the present analysis 
is in general agreement with these empirical 
correlations. The calculated Nusselt numbers 
approach the values predicted by Dwyer’s 
correlation at high P&cl& numbers and approach 
the molecular-conduction value at low P&cl& 
numbers. 
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The last three figures present results for 
cases of axially varying heat flux. Figure 9 
illustrates the variations of the local Nusselt 
numbers for linearly changing heat flux, where 
q1 = 1 + bx. With increasing heat flux (b > 0), 
N&X) is seen to be higher than the corresponding 
values for the constant flux case (b = 0). For 

20 

I8 

16 

6 

Pr =0005 

b 

I.0 
0.1 
001 
0 

FIG. 9. Local Nusselt numbers for linearly varying heat flux. 

the conditions of this sample case, the difference 
is seen to be significant for b > 001. The effect 
is even more pronounced for decreasing heat 
fluxes (b < 0). For the conditions considered, 
it is seen that with b equal to -0.05, there is a 
decrease of approximately 25 per cent in Nu(x) 
from the constant-flux value, at x = 12. With 
negative values of b, qr becomes zero at x = l/b 
where Nu + 0. This is illustrated in Fig. 9 
by the curve for b = -0.1 which approaches 
zero at x = 10 equivalent diameters. 

Figure 10 presents local Nusselt numbers for 
cases of sinusoidal heat flux variations. Zero 
amplitude (A = 0) corresponds to the base case 
of step-function heat flux. For non-zero ampli- 
tude (A > 0), one finds the local Nu to be first 
greater than, and then less than, the base 
case Nu as x increases from 0 to L. The cross- 
over point, where the local Nu is equal to that 
for the base case, is seen to be in the region of 
x z 0.7L for all cases shown. 

30 

6 

02 04 06 08 IO 

x/L 

FIG. 10. Local Nusselt numbers for sinusoidal heat flux. 

From the designers’ point of view, it is 
important to know the error that would result 
from neglecting the effect of axial variations 
in heat flux. For example, in nuclear reactor 
cores where heat flux profiles are often of a 
sinusoidal shape, one would like to know the 
error in (7” - 7” that would occur should the 
thermal design be based on the simple, fully 
developed Nu corresponding to the constant 
flux case. The temperature difference based 
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on this simple, approximate design is 

VW - 2& = *a 
A%{ 00) k 

. F(x) cw 

where Nu(cc) equals fully developed Nu for 
constant flux case. The actual temperature 
difference, based on the present rigorous solution 
is 

0-w - ‘4,) = &. W4 w 

where Nu(x) is evaluated from equation (23). 
Figure 11 shows plots of the ratio 4 = (T, - lJ/ 
(T, - T& for a heat flux of q1 = 
1 + 20 sin [(x,/L) n]. Curves are presented for 
two values of the period L. Note that # = 1 
indicates zero error, 4 < 1 indicates (T, - TJd 

IO 
9- 

B- 

7 - fT, -& 1 -based on analytic solution 

6 - CT, -6 lo- based on approximate 

5- solution, using fully 
developed Nu for constant I 

4- 9 case 

3- 

I 

2- 

/ 
Pr=OQO5 

03- 
r,=iCJ 

_I 

Fle=5x104 

OZ- 
q =i+20sin(f,) 

q-1 

01 I 1 I I 
0 02 04 06 08 IO 

x/L 

FIG. 11. Temperature difference for sinusoidal heat flux. 

is a conservative design, and # > 1 indicates 

(7, - Tb),, is an inadequate design. In the two 
examples shown, it is seen that the simple design 
is conservative for 0 < x < 0*67L, then becomes 
increasingly more inadequate as x + L. At 
x z 0.9 L, the temperature difference estimated 
by the simple design is in error by x 50 per cent. 
The real consequence of this error would be 
affected by specific design parameters since 
(a) the error is greatest in the region of de- 
creasing heat flux where temperature differences 
may be small in any case, but on the other hand, 
(b) the greatest error is in the exit region where 
the fluid would be hottest and one may be 
especially concerned with a maxims tem- 
perature limitation on the heating surface. 
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EFFETS DE LA REGION D’ENTREE ET DU FLUX DE CHALEUR VARIABLE SUR LE 
TRANSPORT DE CHALEUR TURBULENT VERS DES METAUX LIQUIDES S’ECOULANT 

DANS DES CONDUITES ANNULAIRES CONCENTRIQUES 

R&uu&-Une solution analytique a ett6 obtenue pour le probl&me de la region dent&e en turbulent 
avec une distribution de flux de chaleur en echelon. Les valeurs propres, les fonctions propres et les co- 
efficients de series necessaires ont ete &al&s a partir d&equation caracttristique par la methode de Rung+ 
Kutta. 

Les nombres de Nusselt calculb dans la region dent&. etaient en accord g&t&l avec des mesures 
experimentales recentes. La solution a ettt alors genQalisQ pour comprendre les cas dun flux de chaleur 
variant arbitrairement, au moyen de l’integrale de Duhamel, et des resultats d’exemples ont ete obtenus 
pour les cas de distributions de flux de chaleur lineaire et sinusoldale. On a insiste sur les fluides a faibles 
nombres de Prandtl, bien que la solution soit g&.rale et quelques calculs d’exemples ont Ctt faits pour des 

fluides a nombres de Prandtl mode&s. 

EINFLUSSE DES HYDRODYNAMISCHEN EINLAUFS UND DER 
VEBANDERLICHEN WARMESTROMDICHTE AUF DEN WARMEUBERGANG BE1 

TURBULENTER STRC)MUNG VON FLUSSIGEN METALLEN IN KONZENTRISCHEN 
RINGRAUMEN 

Fiir das Problem des turbulenten Einlaufgebietes bei stufenfiirmiger Verteihmg der 
Warmestromdichte wurde eine analytische Losung gefunden. Die notwendigen Eigenwerte, Eigenfunktionen 
turd Serien-koefflenten wurden aus der charakteristischen Gleichung mit der Methode von Runge 
Kutta ermittelt. Die berechneten Nusselt-Zahlen im Einlaufgebiet stimmen im allgemeinen mit neueren 
experimentellen Messungen tiberein Die Lbsung wurde dann mit Hilfe des Duhamel’schen Integrals 
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erweitert, sodass such Ftile mit beliebiger Wkmestromverteilung eingeschlossen sind Als Beispiele wurden 
die Ergebnisse fiirlineare und sinusfirmige Wiirmestromverteilungen berechnet. Besonders berticksichtigt 
wurden Fliissigkeiten mit kleiner Prandtlzahl, obwohl die Liisung allgemein gilt Einige Rechnungen 

wurden fiir Fliissigkeiten mit mittleren Prandtl-Zahlen durchgeftirt. 

BJIIGIHME BXOAHOrO YYACTHA I4 HEPEMEHHOrO TEIIJlOBOrO 
HOTOHA HA TYPBYJIEHTHbIn IIEPEHOC TELTIA IIPkl TE=IEHEIH 

RkIAKLIX METAJIJIOB B KOHQEHTPBYECKBX ICAHAJIAX 

AHHOTaqIIJI-nOJIyqeK0 aHaJIIITII4eCKOe peILIeHIIe 3aRa'III TypbyJIeHTHOrO TeqeHBR BO 
BXOAHOtt 06nacTK IIpII paCIIpeAeJIeHIIII TeIIJIOBOI'O IIOTOKa II0 CTyIIeHqaTOMy 3aKOHy. n3 
XapaKTepMCTWIeCKOrO ypaBHeHKn paCCYIITaHbI C IIOMOmbKI MeTOga PyHre-HyTTa COOTBeTCT- 
ByIOmIIe CO6CTBeHHbIe 3HaYeHIfR, CO6CTBeIIHble ~yHKuIII4 II K03@@InIIeHTbI pRJIOB. HatReKo, 
YTO paCKeTHbIe 3HaueHAR Kp'ITepIIeB HyCCeJIbTa BO BXOJIHO~ o6nacTs CornacyIoTcH c nony- 
YeHHblMR B IIOCJIeRHee BpeMK AaHHbIMK 3KCIIepKMeHTaJIbHbIX II3MepeHIItr. c IIOMOIIIbIo 
KHTerpana &oaMeJIn penIeHKe o6o6meHo Ha CJIyYati npoKaBonba0 W3MeKneMOro TennoBOrO 
IIOTOKa; IIOJIyqeHbI pe3yJIbTaTbI @IFI nKKenHor0 II cHHycom~anbHor0 pacnpefieneHwti 
TeIIJIOBOrO IIOTOKa. OcoFoe BHIIMaIIMe o6pamanocb Ha NQKOCTII C HIIBKMMII 3HaqeHAII 
KpATepAR npaHJJTJIFI, XOTK peIIIeHIIe IIOJIyqeKO B 06nIeM BIIae, II IIpOBeAeHbI HeKOTOpbIe 

paCqeTbI AJIH NIAKOCTefi C yMepeHHbIMI4 3HaueHBRMII KpIITepIIK npaHaTnII. 


