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ENTRANCE REGION AND VARIABLE HEAT FLUX
EFFECTS IN TURBULENT HEAT TRANSFER TO LIQUID
METALS FLOWING IN CONCENTRIC ANNULI*
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Abstract—An analytical solution was obtained for the turbulent entrance-region problem with a step-
function heat flux distribution. Necessary eigenvalues, eigenfunctions, and series coefficients were evaluated
from the characteristic equation by the method of Runge-Kutta. Calculated Nusselt numbers in the
entrance region were found to be in general agreement with recent experimental measurements. The
solution was then generalized to include cases of arbitrarily varying heat flux by means of Duhamel’s
integral, and sample results were obtained for cases of linear and sinusoidal heat flux distributions,
Emphasis was placed on low-Prandtl-number fluids, though the solution is general and some sample
calculations were made for fluids of moderate Prandt! numbers.

NOMENCLATURE
T2 =Ty
constant in sinusoidal heat flux func-
tion;
constant in linear heat flux function;
series coefficient in equation (12};
heat capacity;
heat flux function, as defined by equa-
tion (3);
function in temperature solution, as
defined in equation (8);
molecular thermal conductivity;
total effective thermal conductivity ;
period of sinusoidal heat flux form;
Peclet number = 2apV C,/k;
Prandtl number = C u/k;
heatflux atr =r,;
heat fluxatr =r,;
constant heat flux at r = r, for step-
function case;
local Nusselt numbers for ¢ = 1;
local Nusselt numbers for varying y;
radial coordinate;

* This work was performed under the auspices of the
U.S. Atomic Energy Commission.

Tys
r,
r*,

R,
Re,

e R

X,
x’,

»
Y,

Z

radius of inner (core) tube;

radius of outer (shell) tube;

rafry;

afr; =r, — 1;

Reynolds number = 2apV/yu;
temperature;

bulk temperatue;

inlet temperature;

wall temperature;

wall temperature, as defined by equa-
tion (20);

dimensionless local velocity = o(y)/V
axial velocity ;

bulk average velocity;

z/2a;

defined by equation (20);

r —ri)a;

eigenfunction in equation (12);

axial coordinate.

Greek letters

2
ns

Eps
Ems
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eigenvalues in equation (12};
turbulent eddy diffusivity of heat;
turbulent eddy diffusivity of momen-
tum;



0, dimensionless temperature

= [T - T]/[Qa/k];
6;,  developed temperature solution;
f.  entrance-region temperature solution;

i, viscosity;
P, density ;
o, dimensionless total diffusivity

_P(k .
_u(pCp+8">’

¢’ (Tw - Tb)/(Tw - T;;)d:
v, ratio of heat to momentum diffusivities.

INTRODUCTION
HEAT TRANSFER to fluids flowing through
annular passages is of practical importance
and has been the subject of many studies in
recent years [1-10]. In terms of theoretical
analysis, the case of laminar flow is now well
in hand with solutions available for the entrance
region, the asymptotic (thermally developed)
region, and for both constant and axially
varying boundary conditions [7]. Analysis of
heat transfer with turbulent flow in annuli is
not nearly as complete. Only the thermally-
developed, asymptotic case has been analyzed
thoroughly for a wide range of radius ratios and
Prandtl and Reynolds numbers [3, 5, 8-10].
For the entrance region problem, the most
pertinent theoretical studies to date are those
of Kays and Leung [9], Lee [10] and Quarmby
and Anand [11]. Kays and Leung [9] utilized
experimental measurements to deduce tempera-
ture solutions for four radius ratios and a
number of Reynolds numbers. However, since
their results were based on experimental measure-
ments made with air, the complete solutions
are available only for Pr =07 Lee [10]
studied the classical entrance-region problem
(with a step increase in heat flux), for the case
of heat transfer from the core tube. Using a
boundary-layer model and an assumed radial
distribution of heat flux, he obtained only
numerical solutions for the entrance-region
Nusselt numbers at several radius ratios, Prandtl
numbers and Reynolds numbers. For the more
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complex problem of axially varying heat flux,
only the experimentally derived solution of
Kays and Leung is available. As indicated in
their paper [9], Kays and Leung’s temperature
functions may be utilized to obtain local
Nusselt numbers for axially varying heat fluxes
by the superposition technique, provided
Pr =07 and Re and r. are restricted to the
values of their tests. Lee’s [10] numerical
solutions are limited entirely to the step-
function boundary condition, and do not deal
with the more general boundary condition of
variable heat fluxes. Quarmby and Anand [11]
has just recently presented a solution for the
case of constant wall temperatures.

Thus, there appears to be a need for rigorous,
general solutions for the problem of turbulent
heat transfer in the entry-region of annuli,
especially for the case of axially varying heat
fluxes. Such analyses are needed most for fluids
with low Prandtl numbers, (e.g. the liquid
metals), for which the effects of variations in
boundary conditions may be especially
important.

This paper presents an exact, analytical
treatment of the subject problem. Specifically,
we considered the case of turbulent flow through
concentric annuli with:

(a) fully developed turbulent flow

(b) uniform inlet temperature

(c) heat transfer from the inner (core) wall

(d) steady state

(e) heat flux arbitarily varying in the axial

direction.
The approach was to first obtain a rigorous
solution- for the step-function, constant-heat-
flux problem by means of the classical,
orthogonal-expansion  method  previously
utilized for heat transfer in tubes and between
parallel plates [12,13]. This type of solution
was preferred since the eigenvalues and functions,
once evaluated, could then be used to obtain
solutions for the more general problem of
axially varying heat flux. Emphasis was placed
on low-Prandtl-number fluids, though the solu-
tion is generally applicable to, and some limited
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results were obtained at, higher Prandtlnumbers.

ANALYSIS
Figure 1 defines the geometry and coordinate
system for the analysis. For a constant-property
fluid in steady-state flow through an annulus,
the energy transport equation may be written as

oT 190 oT
pC,,va—z = ;E (rke E‘) (1)

if axial symmetry exists. T and v are taken to be
time-averaged temperature and axial velocity,
respectively. The mean radial velocity is zero
at all points for fully developed turbulent flow.
and an entrance solution, 6, such that the
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Fi1G. 1. Coordinate system.

In equation (1), k, represents the total effective
thermal conductivity, which includes both the
molecular-conduction contribution and the tur-
bulent, eddy-diffusion contribution :

k, =k + pC,e, (2

The appropriate boundary conditions for the
stated problem are:

g, = heat flux at inner wall

L

—~| =Fa ©

r=ry

q, = heat flux at outer wall = 0

)

Tz=0,r)=T, ©)
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(a) Step-function case
Consider first the simplest case where heat
flux varies as a step function,

q, = F(z) = 0forz < 0 }
= Q, (a constant), for z = 0. ©)

The dimensionless temperature solution is
sought in two parts—a fully developed solution,
6, which is applicable in the region of large x,
and an entrance solution, 6, such that the
complete solution is given by:

0(x, y) = 04x,y) + 0.(x y). @)

Due to its linearity, equation (1) is applicable to
both 8, and 8, individually. It is evident that 6,
does not have to satisfy the initial condition at
x = 0, and that 6, approaches zero as x — 0.

By an analysis similar to that described in
[12], the solution for 6, is obtained as,

bx.3) = =22+ ()

Pe2 + R) @®

where G(y) represents the radial @ profile in the
fully developed region. It can be shown that
G(y) is uniquely determined by the equations:

21
Pe2+R) 1+Ry

d d
5 [o(y)-(l + Ry) —9] o)

Re - u(y)-

dy|
G
s I
1,0 (10)
1
{u(y)- G(»)-(1 + Ry)dy = 0. (11)

[

The solution for 6, is obtained by separation
of variables:

< 4p:
ee(xa y) = gl CnY;n(y) €Xp [_ _Ia le (12)

where the eigen constant, B2, and eigen func-
tions, Y,(y), are determined from the character-
istic equation,
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d dy,
5 [a(y)-(l + Ry): dy}
+[uy) -0 +Ry)- 1Y, =0 (13)
and boundary conditions,
oY ay,
- =7 =0 14
ay y=0 ay y=1 ( )

Due to the orthogonality property of the
governing equations, the series coefficients, C,,
can be obtained from the relation

—i“(.V)‘G(Y)'(leRy)-Y,,dy
C,=—2

gu(y)'(l + Ry) Y2dy

(15)

The complete temperature solution is thus,

0(x,y) = x + G(y)

(2 + R) Pe

e}

v Z C. Yy exp [— b x] (16)

n=1
It is of particular interest to know the local
wall temperature, which is determined from
equation (16) to be,

T(vy=0=T,+2 [ 8+ o)

k | (2+ R)Pe

+ Z C,Y,(0) exp [~ jfj x} (17)

n=1

The local Nusselt number is then obtained as

_ 2aQ
W, -

_ 2

- s

d
(18)

4B
G(0) + Z CaY,(0)exp [~ Ro
and the fully developed Nusselt number is

found to be,

Nu(x = o0) = (19)

2
G(0)
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(b) Variable heat flux case

Here, we allow the wall heat flux to be an
arbitrary function of axial position:

q, = F(x) x=0.

Due to the linearity of the governing energy
equation (1), it is possible to use Duhamel’s
integral to extend the step-function solution to
the case of variable heat flux. From equation (17),
we have that the effect of a unit increase in heat
flux (Q = 1), at position x/, on the downstream
wall temperature is

a 8(x—x)
k 2+ R)Pe

+ Z C,Y.(0)exp |:— Afj (x — x’):l . (20)

n=1

T, [(x,x)— Ty = + + G(0)

Applying Duhamel’s theorem, the wall tem-
perature at x, resulting from a variable heat
flux, g, = F(x), in the region 0 < x' < x s,

T — Tp = J F(x’).% [Tw, LX) — To] dx
0

whence,

X

T (x) =T, + ‘—‘kf j F(x’){ 2
0

(2 4+ R) Pe

1N 42
- R—ezcnﬁﬁ Y, (O)exp [—— If(: (x— x’)] }dx’.
n=1

(21)

The local bulk temperature is obtained by heat
balance,

X

JF(x’)dx’.

0

8a

X =To+ 15 R Pe

(22)

The local Nusselt number may then be deter-
mined to be:
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2a - F(x)
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Re - F(x) 23)

Nu(x)

THLO-LEI T x & 48
—2jﬁ<x) Z C.Y 0 exp [— " (x - ae)] dx

Re

n=1

COMPUTATION

The temperature solution and the expression
for local Nusselt numbers derived above consti-
tute a rigorous solution to the subject problem.
To utilize this solution a number of evaluation
and computation steps are required, namely:

(a) specify the velocity distribution, u(y);

(b) specify the diffusivity distribution, o(y);

(c) determine the G(y) function;

(d) determine the eigenvalues, f2, the eigen

function, Y,(y), and the series coefficients,
Co;

(e) calculate Nu(x) as desired for any F(x)

of interest.

A number of authors have presented either
experimental data or correlations for the fully
developed, turbulent velocity profile in con-
centric annuli [8, 9, 14-21]. Some disagree-
ments still exist regarding the “correct™ velocity
profile and the radius of maximum velocity.
For the present study, the empirical correlation
suggested by Kays and Leung [9] was used to
specify u(y). This correlation was found to be in
reasonable agreement with the experimental
measurements of both Knudsen and Katz [16]
and Brighton and Jones [14]. Levy’s correlation
[18] gives approximately the same velocity
distribution. The procedures suggested by
Rothfus et al. [15] or by Clump and Kwasnoski
[19] may give slightly more accurate estimates
of the velocity distribution. However, both
these procedures required trial-and-error calcu-
lations and it was felt that for the purpose
of this study, the small difference in the results
did not warrant this additional complexity.

e pl k ,
The total diffusivity, o(y) = —{ — + &, }, is
position dependent only because of variations
in the turbulent diffusivity, g, Fortunately, for

liquid metals or other fluids of low Prandtl

numbers, the turbulent diffusivity is small
relative to molecular diffusivity in most cases;
ie.

— > &,

pC,” "
so that some latitude in the specification of g,
is acceptable. Following common practice, one
can write the thermal diffusivity in terms of the
momentum diffusivity :

& = Yem (24)

Rigorously speaking, Y is dependent on Re,
Pr, r, and y [22] However, this dependence is
small for fluids of moderate Prandtl numbers,
for which ¥ =~ 1. For low Pr fluids where
may be significantly different from unity, the
net effect is often still of only second order due
to the relative importance of molecular con-
duction. In this study, sample results were
obtained both for ¢y = 1 and for y varying with
radial position. For the radial distribution of
&n the expressions developed by Deissler [23]
and Reichardt [24], as modified by Kays and
Leung [9] for flow in concentric annuli, were
used in the computations. The modified ex-
pressions successfully correlated the experi-
mental data of Knudsen and Katz [16]. Again,
the slight increase in accuracy that may have
been attained by following the trial and error
procedure of Rothfus et al. [15] was felt to be
unnecessary for this problem.

Once u(y) and o(y) have been specified, it
becomes possible to determine the G(y) function
by numerical solution of equations (9)-(11).
The eigenvalues, fZ, and eigenfunctions, Y(y),
were determined from equations (13) and (14)
by the Runge-Kutta method. Even with the
aid of a high-speed digital computer, this step
required a substantial effort To obtain sufficient
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accuracy in the local Nusselt numbers for small
values of x or for cases with rapidly varying wall
heat flux, it was felt that one would require a
minimum of five eigenvalues in the series ex-
pansion. Twenty terms, with 10 significant
figures for both B2 and Y,(y), were actually
obtained and used in this study for all sample
cases. The series coefficients, C,, were then
evaluated by equation (15).

With B2, Y,(y) and C, in hand, the local
temperature, 6(x, y), and local Nusselt numbers,
Nu(x), for the turbulent entrance region with a
step-function heat flux could be calculated
from equations (16) and (18), respectively.
Similarly, local Nusselt numbers could be
calculated for the variable flux case by equation
(23).

RESULTS AND DISCUSSION
The eigenvalues and functions were deter-
mined for fourteen sample cases, with the
following ranges of variables:

Re: 10% 5 x 10%, 105, 17 x 10°% 2 x 10°
Pr: 0005, 001, 0023, 0-03, 006, 0-1,0-7, 1, 5
re: 1-5,2:5, 278, 40

Since the primary interest of this study is in
heat transfer with liquid metals, the majority
of the sample calculations dealt with Pr = 0-005,
which is the Prandtl number for sodium at
800°F. Table 1 presents values of B2 and
C,- Y{0), based on ¥ = 1, inasmuch as these
are the functions required to calculate Nusselt
numbers. Due to space limitations, values are
given only up to n of 6, while actually 20 eigen
terms were evaluated and used in all calculations.

Figures 2-8 present results for the step-
function (constant) heat flux case. Figure 2
illustrates the variations in local Nu for different
Reynolds numbers, at Pr = 0-005 and r. = 1-5.
As anticipated, Nu(x) decreases from infinity
at x = 0 to asymptotically approach the fully
developed value as x — oo. These results clearly
indicate that the approach to the fully developed
Nu is slower (longer thermal entry length) for
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28 Pr=0-005
r, =5
g, =constant

Nu(x)
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HEAT TRANSFER TO LIQUID METALS

Table 1. Eigenvalues and series coefficients

Pr Re rifryom [H GO n B C Y0
1 2701 —0-1492 4 39790 - 001334
0-005 5 x 10* 15 2 10330 —0:04439 5 61730 - 0007600
3 22630 -0-02059 6 88540 - 0006676
1 2815 -0-1294 4 39970 ~001272
0005 5 x 104 25 2 10470 -004125 5 61970  —0007333
3 22810 — 001966 6 88780  —0006338
1 2971 —0-1042 4 40220  ~001204
0-005 5 x 10% 40 2 10670 —0-03684 5 62260 -0007125
3 23060 —0-01837 6 89100 ~0-006070
1 2329 -0-1716 4 34300 001474
0-005 1 x 10* 15 2 8819 —005113 5 53290 - 0008722
3 19460 ~002324 6 76470 - 0007413
1 3152 —-0-1288 4 46190 ~001194
0005 1 x 10° 15 2 12120 —0:03838 5 71510 -~ 0007100
3 26340 - 001857 6 102500  —0-006005
1 4017 —0-1021 4 58290 - 001026
0-005 2 x 10° 1-5 2 15530 —0-03089 5 89950 -0006273
3 33370 - 001570 6 128700 0005328
1 1630 —0-1253 4 23800 001214
001 5 x 10* 15 2 6259 - 003782 5 36820 -0007417
3 13580 —0-01862 6 52740 0006334
1 2275 —003653 4 29730  —0005023
0023 17 x 105 278 2 8346 - 001260 5 45480 -0-003138
3 17400 —0-007463 6 64 500 ~ 0002558
1 8975 —-0-07705 4 12770 ~0007432
003 5 x 10% 13 2 3464 —002345 5 19620  ~0004111
3 7351 ~0-01189 6 28030 - 0003272
1 7155 -004911 4 9972 - 0004759
006 5 x 10% 15 2 2766 —001515 5 15240 -0:002501
3 5781 —0-007955 6 21700 —~0-001786
1 6395 -0:03303 4 8775 0003228
01 5 x 10* 5 2 2471 ~0-01040 5 13350 - 0001490
3 5115 —0-005455 6 18970 -~ 0001043
1 5321 —0-006004 4 6916 -0-0008041
07 5 x 104 15 2 2034 —0-002150 5 10420 0-00001265
3 4097 —0-0009184 6 147706 ~0-0003053
1 5268 —-0-004213 4 6820 -0-0005940
10 5 x 10* 15 2 2013 -0-001529 5 10270 0-00000185
3 4045 —0-006604 6 14540 - 00002440
1 5180 -0-0008753 4 6661 - 00001625
50 5 x 10* 1 2 1977 —0-0003362 5 10010 —-0-0003373
3 3961 —0-0001635 6 14160 -~ 00001047

673
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developed Nusselt numbers, Nu(oo) calculated
by equation (19).

The strong effect of Prandtl number on local
Nuis shown in Fig. 3. These Nu were calculated
for Re =5 x 10* and r. = 1'5. To interpret
these results in terms of real fluids, note that the
five sample Prandtl numbers are equal to those
of the following fluids at the listed temperatures:

Pr Fluid Temperature F
0005 sodium 800
0010 sodium 250
07 air (1 atm) 212
10 water 340
50 water 94

Some experimental data obtained with air [25]
are also shown in Fig. 3. These are seen to be
approximately 5-10 per cent lower than the
curve calculated for Pr = 0-7. This difference
seems reasonable in view of the slightly different
Re and r, values for the experimental (vs.
calculation) conditions.

The effects of entrance-region and variable
heat flux has often been taken to be more
important for low-Prandtl-number fluids than
for fluids with moderate or high Prandtl numbers
[26]. Thus, for a given set of conditions, at a
given axial position (x), one normally expects the
ratio Nu(x)/Nu(co) to increase with decreasing
Pr. The present analysis indicates that this
behavior is actually true only for certain ranges
of the governing parameters. Figure 4 shows
plots of Nu(x)/Nu(co) vs. Pr at various values
of x, for constant Re and r.. It is seen that in the
rangeof Pr > 0-1,theentrance effect,as measured
by increasing Nu(x)/Nu(wo), does indeed in-
crease with decreasing Pr. However, further
decreases of Pr below 01 shows Nu(x)/Nu(co)
passing through a maximum and then decreasing.
Physically, this behavior can be attributed to
two opposing factors. First decreasing Pr
(increasing thermal conductivity) tends to in-
crease the zone of influence of the wall so that
the over-all temperature profile is more greatly
affected by changes at the boundary. On the
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other hand, higher thermal conductivities tend
to increase the speed of establishing thermal
boundarylayers, which would aid in the approach
to fully developed conditions. Which of the
two factors predominate would, of course, be
dependent on the specifics of a given situation
and would be influenced by the other indepen-
dent variables: Re, x and r,. For the conditions
represented in Fig. 4, the entrance-region effect
was determined to be most important for fluids
with 2 x 1072) < Pr<(5 x 1071). It is in-
teresting to note that Sleicher and Tribus [27]
found a similar maxima effect in the variation
of entry length with Pr for the case of turbulent
flow in tubes with constant temperature bound-
ary condition.

24—

o Lee's boundary layer Re=5x10"
solution for x=6 [ARE-]
ref [10] ¢ =constant

LAl

22—

o I BE| Ll Lol L€
103 1072 0! ot 1!

Pr
FiG. 4. Variation of entrance effect with Prandtl number.

The open circles on Fig. 4 represent Lee’s
results [10] from his boundary-layer solution
for the same conditions, at x = 6. These are
seen to be substantially lower than the com-
parable curve obtained in the present study.
It is significant to note that the formal solution
of Sparrow et al. [12] for the problem of tur-
bulent flow in tubes also showed greater entrance
effect than the boundary layer type of solution
(per Deissler [28]). Sparrow et al. [12] noted
thatthe boundarylayer approach, which requires
that either the temperature or the heat flux
radial profile be assumed, may be more subject
to error than the formal orthogonal-series type
of solution. In the case of Lee’s boundary-layer
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solution for annuli, the assumed radial heat-
flux distribution was based on an expression
originally obtained for the fully-developed
region, with slug flow. There is some uncertainty
regarding the accuracy and effect of such an
assumption for analysis of the entrance region.

The radius ratio, r., has a relatively minor
effect on local Nusselt numbers. This is demon-
strated in Fig 5, where Nu(x)} is plotted vs. x

26

24 Pr =0:005

Re=5x10*

¢,= constant

ye=l

22

Nu(x)

F1G. 5. Effect of radius ratio on local Nusselt numbers.

at three values of r., for Pr = 0005 and Re =
5 x 10% It is seen that at these conditions, for
x > 1, Nu(x) changes no more than 22 per cent
as the radius ratio is reduced by a factor of 2-7
(from 4-0 to 1-5). It should be noted that as r.
approaches unity, Nu(x) should approaclr the
values for the case of flow between parallel
plates. At the other limit, as r. approaches
infinity, one would expect Nu(x) to approach
the values for external flow over a cylinder.
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The analysis was compared with some recent
experimental data of Nimmo et al. [29], and the
results are shown in Fig. 6. The experimental

100
90
80 |-
¢ =constont
Pr=0-023
Re=1-7Tx10°
r=278
— Calculated curve, ¢=1
® Experimental Hg data of
Nimmo, Hlavac and Dwyer

70 |-

40

30 -

Nu {x})

[We (00)=236]

20

FiG. 6. Comparison of calculated and experimental Nusselt
numbers.

measurements were made at a constant heat
flux, using mercury as the test fluid. It should be
noted that the test geometry was such that fluid-
dynamicand thermal boundary layers developed
simultaneously, so that the experimentai Nu
would be expected to be slightly greater than
the calculated Nu at small values of x. In view
of this limitation and the difficulties associated
with making accurate heat transfer measure-
ments in liquid metal systems, the agreement
between calculated and measured Nu shown in
Fig. 6 appears reasonable.

Figure 7 shows the effect of assuming non-
unity diffusivity ratios, ¥, on the computed
results. Of the various expressions that have been
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proposed for estimating ¢ as a function of
radial position, those of Buyco [30] and
Dwyer [31] are among the most recent and
most applicable to liquid metals. Figure 7 shows

[M] for two sample cases, com-
Nu(x) P ’

puted by:
(@ y=1

(b) Buyco’s expression
6 . &m n?
o= 3 PrT {1 1 —exp [— P, /v)]} (26)

(c) Dwyer’s expression
02/Pr — 20
(En/)"?

where, Nu(x) is calculated based on y given by
equation (25) and Nu/'(x) is calculated based on y
given by either equation (26) or equation (27).

(25)

y=1- @7

030 A ()= Nusselt no. for =)
Aw'{x )= Nusseit no. for varying ¥
, ¥ according to Owyer's
expression, equoation {27}
. ¥ according to Buyco's
024 p expression, aquation {26}

28

N -Mal x)
Nu{x)

Pr=0008
5518
= constont
—— R =5x10%
— Rex2x10®

i ] 1 1 ] | i }
o s ) [ 20 25 30 35 50

F1G. 7. Effect of diffusivity ratios on local Nusselt numbers.

As one would expect, the local Nu based on
variable s are lower than the corresponding Nu
for Y = 1. For the cases considered, both
Dwyer’s and Buyco’s expressions lead to Nusselt
numbers which are approximately 0-18 per
cent less than those for Y = 1. The effect of
non-unity diffusivity ratio is seen to be less
important in the entry region than in the fully
developed region.
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The fully developed Nusselt numbers, Nu(co),
shown in the various figures were calculated by
equation (19). A number of correlations for
developed Nusseit numbers have been pre-
viously published and can be compared with
equation (19). In 1962, Baker and Sesonske [32]
published data and an empirical correlation
based on measurements made with Na as NaK
in a double-pipe heat exchanger. Seban [33]
developed an expression for heat transfer to
liquid metals flowing between parallel plates
which can be used to estimate Nusselt numbers
for annuli with small radius ratios. Most
recently, Dwyer [31] presented a semi-empirical
correlation which includes the effect of variable
average . These three correlations are com-
pared with the present analysis in Fig. 8,

100
80

IREREL

80 (D —-- Baker and Sesonske's correlation
@ --- Seban's correlation
40 @ = Present analysis, with ¢ =1
- @) — Dwyers correlotion
20l B —— Moleculor conduction line
B o
2 sf
S p—
4 ® Pr=0005
- 55
¢ =constant
2
, ; el el .
10! 102 103
Pe

Fi1G. 8. Fully developed Nusselt numbers.

where the fully developed Nu is plotted against
Péclét number for r. = 15 and Pr = 0005
Also shown in the figure is the Nusselt number
for the limiting case of molecular conduction
transfer, which is applicable at low Péclét
numbers. It is seen that the present analysis
is in general agreement with these empirical
correlations. The caiculated Nusselt numbers
approach the values predicted by Dwyer’s
correlation at high Péclét numbers and approach
the molecular-conduction value at low Péclét
numbers.
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The last three figures present results for
cases of axially varying heat flux. Figure 9
illustrates the variations of the local Nusselt
numbers for linearly changing heat flux, where
g, = 1 + bx. With increasing heat flux (b > 0),
Nu(x)is seen to be higher than the corresponding
values for the constant flux case (b = 0). For

Nu(x)

F1G. 9. Local Nusselt numbers for linearly varying heat flux.

the conditions of this sample case, the difference
is seen to be significant for b > 0-01. The effect
is even more pronounced for decreasing heat
fluxes (b < 0). For the conditions considered,
it is seen that with b equal to —0-05, there is a
decrease of approximately 25 per cent in Nu(x)
from the constant-flux value, at x = 12. With
negative values of b, ¢, becomes zero at x = 1/b
where Nu — 0. This is illustrated in Fig. 9
by the curve for b = —0-1 which approaches
zero at x = 10 equivalent diameters.

Figure 10 presents local Nusselt numbers for
cases of sinusoidal heat flux variations. Zero
amplitude (4 = 0) corresponds to the base case
of step-function heat flux. For non-zero ampli-
tude (4 > 0), one finds the local Nu to be first
greater than, and then less than, the base
case Nu as x increases from O to L. The cross-
over point, where the local Nu is equal to that
for the base case, is seen to be in the region of
x = 0-7L for all cases shown.

30

28

Pr=0-005

26 Re=5x10* 4
r=t5

24 q, =1+Asin(—~7) .

L =10 equiv. diameters

Nu(x)

0 02 04 06 08 10

x/L
Fi1G. 10. Local Nusselt numbers for sinusoidal heat flux.

From the designers’ point of view, it is
important to know the error that would result
from neglecting the effect of axial variations
in heat flux. For example, in nuclear reactor
cores where heat flux profiles are often of a
sinusoidal shape, one would like to know the
error in (T,, — T,) that would occur should the
thermal design be based on the simple, fully
developed Nu corresponding to the constant
flux case. The temperature difference based
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on this simple, approximate design is

2a
Nu{o) k

where Nu(co) equals fully developed Nu for
constant flux case. The actual temperature
difference, based on the present rigorous solution
is

(T, — T = “F(x) (28)

_ 2a
T Nu(x)k

where Nu(x) is evaluated from equation (23).
Figure 11 shows plots of the ratio ¢ = (T,, — T}/
(T, —T), for a heat flux of g¢q,=
1 + 20sin [(x/L) n]. Curves are presented for
two values of the period L. Note that ¢ = 1
indicates zero error, ¢ < 1 indicates (T,, — T,),

(T, - T) “F(x) (29)

Do O NDOO

— {7, ~7,)—based on analytic solution —
~ (7, —7; }~ based con approximate —
- solution, using fully

developed M for constant
L ¢ case 4

(L~%)
(75

Pr =0-008

%=15
Re=5x10%
q =1+20sin (7 )

ol i 1 ! !
0 o2 o4 o6 08 -0

x/L

Fi6. 11. Temperature difference for sinusoidal heat flux.
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is a conservative design, and ¢ > 1 indicates
(T, — T.), is an inadequate design. In the two
examples shown, it is seen that the simple design
is conservative for 0 < x < 0-67L, then becomes
increasingly more inadequate as x — L. At
x & 09 L, the temperature difference estimated
by the simple design is in error by 250 per cent.
The real consequence of this error would be
affected by specific design parameters since
(a) the error is greatest in the region of de-
creasing heat flux where temperature differences
may be small in any case, but on the other hand,
(b) the greatest error is in the exit region where
the fluid would be hottest and one may be
especially concerned with a maximum tem-
perature limitation on the heating surface.
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EFFETS DE LA REGION D’ENTREE ET DU FLUX DE CHALEUR VARIABLE SUR LE
TRANSPORT DE CHALEUR TURBULENT VERS DES METAUX LIQUIDES S’ECOULANT
DANS DES CONDUITES ANNULAIRES CONCENTRIQUES

Résumé—Une solution analytique a été obtenue pour le probléme de la région d’entrée en turbulent
avec une distribution de flux de chaleur en échelon. Les valeurs propres, les fonctions propres et les co-
efficients de séries nécessaires ont été évalués & partir deél’équation caractéristique par la méthode de Runge—
Kutta.

Les nombres de Nusselt calculés dans la région d’entrée étaient en accord général avec des mesures
expérimentales récentes. La solution a été alors généralisée pour comprendre les cas d’un flux de chaleur
variant arbitrairement, au moyen de I'intégrale de Duhamel, et des résultats d’exemples ont été obtenus
pour les cas de distributions de flux de chaleur linéaire et sinusoidale. On a insisté sur les fluides a faibles
nombres de Prandt], bien que la solution soit générale et quelques calculs d’exemples ont été faits pour des

fluides & nombres de Prandtl modérés.

EINFLUSSE DES HYDRODYNAMISCHEN EINLAUFS UND DER
VERANDERLICHEN WARMESTROMDICHTE AUF DEN WARMEUBERGANG BEI
TURBULENTER STROMUNG VON FLUSSIGEN METALLEN IN KONZENTRISCHEN
RINGRAUMEN

Fiir das Problem des turbulenten Einlaufgebietes bei stufenférmiger Verteilung der
Wirmestromdichte wurde eine analytische Lsung gefunden. Die notwendigen Eigenwerte, Eigenfunktionen
und Serien-kocffizienten wurden aus der charakteristischen Gleichung mit der Methode von Runge—
Kutta ermittelt. Die berechneten Nusselt-Zahlen im Einlaufgebiet stimmen im allgemeinen mit neueren
experimentellen Messungen iiberein. Die Losung wurde dann mit Hilfe des Duhamel’schen Integrals
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erweitert, sodass auch Fille mit beliebiger Wiarmestromverteilung eingeschlossen sind. Als Beispiele wurden

die Ergebnisse fiir lineare und sinusférmige Warmestromverteilungen berechnet. Besonders beriicksichtigt

wurden Fliissigkeiten mit kleiner Prandtlzahl, obwohl die Losung allgemein gilt. Einige Rechnungen
wurden fiir Fliissigkeiten mit mittleren Prandtl-Zahlen durchgefiihrt.

BJIMAHNE BXOJHOI'O YYACTKA W INIEPEMEHHOI'O TEIIJIOBOTO
I[IOTOKA HA TYPBVJIEHTHBIN IEPEHOC TEIJIA 1P TEYEHUU
HAUNIKUX METAJIJIOB B HOHIHEHTPUYECKNX HAHAJIAX

AnrHoranua—Ilony4eHo aHaAUTHUECKOe pellleHMe 3agaud TYpOYJTeHTHOrO TeYeHUA BO
BXOJHOU 0OJacTM npM pacmpefeleHRU TemJIOBOro INOTOKA IO CTyIeHYaTomMy 3akoHy. U3
XapaKTePUCTUYECKOr0 YDPABHEHUA PacCYUTAHBI ¢ nomombio Meroga Pynre-Kyrra coorsercr-
Bywinue co6cTBeHHbIe 3HAUEHUA, cOOCTBeHHbe QyHKIMU 1 Koadduuuenter panos. Haitnero,
YTO pacyeTHHe 3HAYeHHA KpuTepueB HyccembTa Bo BXORHOI 061aCTH COINIACYIOTCA C IIOJY-
YeHHBIMM B MOCJeJHee BpeMA [JAHHBIMU OKCIEPMMEHTAJBHHIX H3MepeHmit. C IOMOI(bIO
unTerpana Joamensn pemenne 06001eHO Ha CIy4yail TPOMABOJBHO UBMEHSEMOr0 TEILIOBOTO
NOTOKA; MOJNYYeHH pesydbTATHl [JA JUHERHOr0o ¥ CHHYCOMJAJIBHOTO pachpejfeseHmit
TeNnA0BOro moroka. Ocoboe BHMMAaHHEe 00paAIlaNOCh HA HUAKOCTH C HUBKHMH BHAYEHUA
wputepua Ilpanarid, XoTa pellieHMe ITIOJy4eHO B 00lleM Buje, M IIPOBeJeHH HEKOTOpHIE
pacdeTHl AJIA HUIKOCTeH ¢ yMepPeHHHMY 3HAYEHUAMU KpuTepus IIparnris.



